
 

 

  
Abstract—The problem of the mean-square optimal linear 
estimation of linear functionals which depend on the unknown values 

of a stochastic stationary stochastic process ( )tξ


, t +∈ , from 

observations of the process ( ) ( )t tξ η+




 at points \t S−∈ is 
considered. Formulas for calculating the mean-square errors and the 
spectral characteristics of the optimal linear estimates of the 
functionals are proposed under the condition of spectral certainty, 

where spectral densities of the processes ( )tξ


 and ( )tη  are 
exactly known. The minimax (robust) method of estimation is applied 
in the case of spectral uncertainty, where spectral densities are not 
known exactly, while sets of admissible spectral densities are given. 
Formulas that determine the least favorable spectral densities and 
minimax spectral characteristics are proposed for some special sets of 
admissible densities. 
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I. INTRODUCTION 

The problem of estimation of the unknown values of stochastic 
processes is of constant interest in the theory of stochastic 
processes. Formulation of the interpolation, extrapolation and 
filtering problems for stationary stochastic sequences with 
known spectral densities and reducing of these estimation 
problems to the corresponding problems of the theory of 
functions belongs to A. N. Kolmogorov [17]. Effective 
methods of solution of the estimation problems for stationary 
stochastic sequences and processes were developed by 
N.Wiener [44] and A. M. Yaglom [45]-[46]. Further results 
are presented in the books by Yu. A. Rozanov [41]and 
E.J.Hannan [12]. The crucial assumption of most of the 
methods developed for estimating the unobserved values of 
stochastic processes is that the spectral densities of the 
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involved stochastic processes are exactly known. However, in 
practice complete information on the spectral densities is 
impossible in most cases. In this situation one finds parametric 
or nonparametric estimate of the unknown spectral density and 
then apply one of the traditional estimation methods provided 
that the selected density is the true one. This procedure can 
result in significant increasing of the value of error as 
K.S.Vastola and H. V. Poor [43] have demonstrated with the 
help of some examples. To avoid this effect one can search the 
estimates which are optimal for all densities from a certain 
class of admissible spectral densities. These estimates are 
called minimax since they minimize the maximum value of the 
error of estimate. The paper by Ulf Grenander [11] was the 
first one where this approach to extrapolation problem for 
stationary processes was proposed. Several models of spectral 
uncertainty and minimax-robust methods of data processing 
can be found in the survey paper by S. A. Kassam and 
H.V.Poor [16]. J. Franke [8], J. Franke and H. V. Poor [9] 
investigated the minimax extrapolation and filtering problems 
for stationary sequences with the help of convex optimization 
methods. This approach makes it possible to find equations 
that determine the least favorable spectral densities for 
different classes of densities. In the papers by 
M.P.Moklyachuk [25]-[28] the extrapolation, interpolation and 
filtering problems for functionals which depend on the 
unknown values of stationary processes and sequences are 
investigated. The estimation problems for functionals which 
depend on the unknown values of multivariate stationary 
stochastic processes is the aim of the book by M. Moklyachuk 
and O. Masytka [30]. I. I. Dubovets'ka, O. Yu. Masyutka and 
M. P. Moklyachuk [3], I. I. Dubovets'ka and M.P. Moklyachuk 
[4]-[7], M. P. Moklyachuk and I. I. Golichenko [29] 
investigated the interpolation, extrapolation and filtering 
problems for periodically correlated stochastic sequences. In 
the paper by M. M. Luz and M. P. Moklyachuk [19]-[23] 
results of investigation of the estimation problems for 
functionals which depend on the unknown values of stochastic 
sequences with stationary increments are described. 
Results of investigations of the prediction problem for 
stationary stochastic sequences with missing observations are 
presented in the papers by P. Bondon [1], [2], Y. Kasahara, M. 
Pourahmadi and A. Inoue [15]. [38]. In papers by 
M.P.Moklyachuk and M. I. Sidei [31]-[37] results of 
investigations of the interpolation, extrapolation and filtering 
problems for stationary stochastic sequences and processes 
with missing observations are proposed. 
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In this paper we deal with the problem of the mean-square 
optimal linear estimation of the functional 

0

( ) ( ) ,A a t t dtξ ξ
∞

= ∫
 

   which depends on the unknown 

values of a stochastic multidimensional stationary stochastic 
process 1( ) { ( )}T

k kt tξ ξ ==


, t +∈ , from observations of the 

process ( ) ( )t tξ η+




 at points \t S−∈ , 

1[ , ].s
l l l lS M N M== ∪ − − −  The case of spectral certainty, 

as well as the case of spectral uncertainty, are considered. 
Formulas for calculating the spectral characteristic and the 
mean-square error of the optimal linear estimate of the 
functional are derived in the case of spectral certainty, where 
the spectral densities of the processes are exactly known. In 
the case of spectral uncertainty, where the spectral densities 
are not exactly known while a set of admissible spectral 
densities is given, the minimax method is applied. Formulas 
for determination the least favorable spectral densities and the 
minimax-robust spectral characteristics of the optimal 
estimates of the functional are proposed for some specific 
classes of admissible spectral densities. 

I. HILBERT SPACE PROJECTION METHOD OF EXTRAPOLATION 
OF STATIONARY PROCESSES  

Consider two uncorrelated multidimensional stationary 

stochastic processes { } 1
( ) ( ) , ,T

k k
t t tξ ξ

=
= ∈



  and 

{ } 1
( ) ( ) , ,T

k k
t t tη η

=
= ∈



  with zero first moments 

( ) 0E tξ =
 

, ( ) 0E tη =




, and correlation functions  
*( ) ( )( ( ))R n E j n jξ ξ ξ= +




 
and 

*( ) ( )( ( ))R n E j n jη η η= +




 
respectively. 
The correlation functions of the processes admit the spectral 
decomposition (see, for example, [10]) 

( ) ( ), ( ) ( ),in inR n e W d R n e W dλ λ
ξ ξ η ηλ λ

∞ ∞

−∞ −∞

= =∫ ∫  

where ( )W dξ λ  and ( )W dη λ  are spectral measures of the 

processes ( )tξ


 and ( )tη  respectively. 

Suppose that the spectral measures ( )W dξ λ  and ( )W dη λ  
are absolutely continuous with respect to the Lebesgue 
measure. In this case the correlation functions can be 
represented in the form 

1( ) ( ) ,
2

inR n e F dλ
ξ λ λ

π

∞

−∞

= ∫  

1( ) ( ) ,
2

inR n e G dλ
η λ λ

π

∞

−∞

= ∫  

where { } , 1
( ) ( ) T

kl k l
F fλ λ

=
=  and { } , 1

( ) ( ) T
kl k l

G gλ λ
=

=  are 

spectral densities of the processes ( )tξ


 and ( )tη . 
 
Suppose that the minimality condition holds true 

1( ( )) ( ( ) ( )) ( ) ,b F G b dλ λ λ λ λ
∞ −

−∞
+ < ∞∫   (1) 

where 
1

( ) ( )
l

l l

Ms
it

l M N

b t e dtλλ α
−

= − −

= ∑ ∫


 is a nontrivial function 

of exponential type. 
Under this condition the error-free extrapolation is impossible 
[41]. 

The stationary stochastic processes ( )tξ


 and ( )tη  admit 
the spectral decomposition (see, for example, [10], [14]) 

( ) ( ), ( ) ( ),it itt e Z d t e Z dλ λ
ξ ηξ λ η λ

∞ ∞

−∞ −∞

= =∫ ∫




 (2) 

where ( )Z dξ λ  and ( )Z dη λ  are orthogonal stochastic 

measures defined on [ , )−∞ ∞ , that correspond to the spectral 

measures ( )W dξ λ  and ( )W dη λ , such that the following 
relations hold true 

1 2

*
1 2 1 2

1( )( ( )) ( ) ( ) ,
2

EZ Z W F dξ ξ ξ λ λ
π ∆ ∩∆

∆ ∆ = ∆ ∩ ∆ = ∫

1 2

*
1 2 1 2

1( )( ( )) ( ) ( ) .
2

EZ Z W G dη η η λ λ
π ∆ ∩∆

∆ ∆ = ∆ ∩ ∆ = ∫
Consider the problem of the mean-square optimal linear 
extrapolation of the functional 

0

( ) ( ) ,A a t t dtξ ξ
∞

= ∫
 

   

which depends on the unknown values of the process ( )tξ


, 

based on observations of the process ( ) ( )t tξ η+




 at points 

\t S−∈ , where 1[ , ].s
l l l lS M N M== ∪ − − −  

It follows from the spectral decomposition (2) of the process 

( )tξ


 that the functional Aξ


 can be represented in the form 

( ( )) ( ),A A Z dξξ λ λ
∞

−∞

= ∫


  

0

( ) ( ) .itA a t e dtλλ
∞

= ∫


 

Denote by Âξ


 the optimal linear estimate of the functional 

Aξ


 from observations of the process ( ) ( )t tξ η+




. Let  
2ˆ( , )F G E A Aξ ξ∆ = −

 

 

be the mean-square error of the estimate Âξ


. Since the 

spectral densities of stationary processes ( )tξ


 and ( )tη  are 
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known, we can use the method of orthogonal projections in the 
Hilbert spaces (see, for example, [17]) to find the estimate. 

Consider the Hilbert space 2 ( , , )H L P= Ω   generated 

by random variables ξ  with zero mathematical expectations, 

0Eξ = , finite variations, 2| |E ξ < ∞ , and inner product 

( , ) Eξ η ξη= . Denote by ( )sH ξ η+  the closed linear 
subspace generated by elements 

{ ( ) ( ) : \ , 1, }k kt t t S k Tξ η+ ∈ =  in the Hilbert space 

2 ( , , )H L P= Ω  . Let 2 ( )L F G+  be the Hilbert space of 

complex-valued functions { } 1
( ) ( ) T

k k
a aλ λ

=
=



 such that 

( ) ( ( ) ( )) ( )a F G a dλ λ λ λ λ
∞

−∞
+ =∫

   

, 1
( ) ( )( ( ) ( ))

T

k l kl kl
k l

a a f g dλ λ λ λ λ
∞

−∞
=

= + < ∞∑∫  

Denote by 2 ( )sL F G+  the subspace of 2 ( )L F G+  
generated by functions 

{ } 1
{ , , 1, , \ }.Tit

k k kl l
e k T t Sλδ δ δ

=
= = ∈  

The mean-square optimal linear estimate Âξ


 of the 

functional  Aξ


 is the form 

ˆ ( ( )) ( ( ) ( )),A h Z d Z dξ ηξ λ λ λ
∞

−∞

= +∫


  

where 1 2( ) { ( ))} ( )T s
k kh h L F Gλ λ == ∈ +  is the spectral 

characteristic of the estimate. 

The mean-square error ( ; , )h F G∆  of the estimate Âξ


 
can be calculated by the formula 

2ˆ( ; , )h F G E A Aξ ξ∆ = − =
 

 

1 ( ( ) ( )) ( )( ( ) ( ))
2

A h F A h dλ λ λ λ λ λ
π

∞

−∞

= − − +∫   

1 ( ( )) ( ) ( ) .
2

h G h dλ λ λ λ
π

∞

−∞

+ ∫   

According to the Hilbert space projection method proposed by 
A. N. Kolmogorov [17], the optimal linear estimate of the 
functional Aξ



 is a projection of the element Aξ


 of the space 

H on the subspace ( )sH ξ η+ , which can be found from the 
following conditions: 

1). ˆ ( ),sA Hξ ξ η∈ +


 

2). ˆ ( ).sA A Hξ ξ ξ η− ⊥ +
 

 
It follows from the second condition that the spectral 

characteristic ( )h λ  of the optimal linear estimate Âξ


 for 

any \t S−∈  satisfies the equations 

( )1 ( ) ( ) ( )
2

itA h F e dλλ λ λ λ
π

∞
−

−∞

− −∫


 

1 ( ( )) ( ) 0.
2

ith G e dλλ λ λ
π

∞
−

−∞

− =∫


  

The last relation can be represented in the form 

( ( )) ( ) ( ( )) ( ( ) ( ))) itA F h F G e dλλ λ λ λ λ λ
∞

−

−∞

 − + ∫    

0, \ .t S−= ∈                                                        (3) 
Consider the function  

( ( )) ( ( )) ( ) ( ( )) ( ( ) ( ))C A F h F Gλ λ λ λ λ λ= − +    
and its Fourier transformation 

1( ) ( ) , .
2

itt C e d tλλ λ
π

∞
−

−∞

= ∈∫c


  

According to condition (3) the function ( )tc


 can be nonzero 
only on the set [0, )U S= ∪ ∞ . Therefore the function 

( )C λ  is of the form 

1 0

( ) ( ) ( ) ,
l

l l

Ms
it it

l M N

C t e dt t e dtλ λλ
− ∞

= − −

= +∑ ∫ ∫c c
 

 

and the spectral characteristic of the estimate Âξ


 is of the 
form 

1( ( )) ( ( )) ( )( ( ) ( ))h A F F Gλ λ λ λ λ −= + −   
 

1( ( )) ( ( ) ( )) .C F Gλ λ λ −− +           (4) 

It follows from the first condition, ˆ ( )sA Hξ ξ η∈ +


, which 

determine the optimal linear estimate of the functional Aξ


, 
that for any t U∈  the following relation holds true 

( )1 1( ( )) ( )( ( )) ( ( )) ( ( ))A F H C Hλ λ λ λ λ
∞

− −

−∞

−∫    

0,ite dλ λ− =  (5) 
where ( ) ( ) ( )H F Gλ λ λ= +  

In order to represent the last equations in terms of linear 
operators in the space 2 ( )L U  we introduce the operators 

( )( )t =Bx  

1 ( )

1

1 ( ( )) ( ( ))
2

l

l l

Ms
i u t

l M N

u H e d duλλ λ
π

− ∞
− −

= − − −∞

= +∑ ∫ ∫x


  

1 ( )

0

1 ( ( )) ( ( )) ,
2

i u tu H e d duλλ λ
π

∞ ∞
− −

−∞

+ ∫ ∫x


  

( )( )t =Rx  

1 ( )

1

1 ( ( )) ( )( ( ))
2

l

l l

Ms
i u t

l M N

u F H e d duλλ λ λ
π

− ∞
− −

= − − −∞

= +∑ ∫ ∫x
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1 ( )

0

1 ( ( )) ( )( ( )) ,
2

i u tu F H e d duλλ λ λ
π

∞ ∞
− −

−∞

+ ∫ ∫x


  

( )( )t =Qx  

1 ( )

1

1 ( ( )) ( )( ( )) ( )
2

l

l l

Ms
i u t

l M N

u F H G e d duλλ λ λ λ
π

− ∞
− −

= − − −∞
∑ ∫ ∫x





1 ( )

0

1 ( ( )) ( )( ( )) ( ) ,
2

i u tu F H G e d duλλ λ λ λ
π

∞ ∞
− −

−∞

+ ∫ ∫x


  

2( ) ( ), .t L U t U∈ ∈x


 

Consider the function ( )ta


, t U∈ , such that  

( ) 0, , ( ) ( ), 0t t S t a t t= ∈ = ≥a a
 





. 
Making use of the introduced operators and functions relation 
(5) can be represented in the form 
( )( ) ( )( ), .t t t U= ∈Ra Bc  (6) 

Suppose that the operator B  is invertible (see \cite{Salehi} 
for more details). Then the function ( )tc



 can be calculated by 
the formula 

1( ) ( )( ), .t t t U−= ∈c B Ra


 
Therefore, the spectral characteristic ( )h λ  of the estimate 

Âξ


 can be calculated by the formula 
1( ( )) ( ( )) ( )( ( ) ( ))h A F F Gλ λ λ λ λ −= + −   

1( ( )) ( ( ) ( )) ,C F Gλ λ λ −− +            (7) 

1 1

1 0

( ) ( )( ) ( )( ) .
l

l l

Ms
it it

l M N

C t e dt t e dtλ λλ
− ∞

− −

= − −

= +∑ ∫ ∫B Ra B Ra

The mean-square error of the estimate Âξ


 can be calculated 
by the formula 

( ; , )h F G∆ =  

11 (( ( )) ( ) ( ( )) )( ( ) ( )) ( )
2

A G C F G Fλ λ λ λ λ λ
π

∞
−

−∞

= + + ×∫  

1 *( ( ) ( )) (( ( )) ( ) ( ( )) )F G A G C dλ λ λ λ λ λ−× + + +   
 

11 (( ( )) ( ) ( ( )) )( ( ) ( )) ( )
2

A F C F G Gλ λ λ λ λ λ
π

∞
−

−∞

+ − + ×∫  

1 *( ( ) ( )) (( ( )) ( ) ( ( )) )F G A G C dλ λ λ λ λ λ−× + + =   
1( )( ), ( )( ) ( )( ), ( ) ,t t t t−= 〈 〉 + 〈 〉Ra B Ra Qa a



  (8) 

where ( ), ( )a t b t




 is the inner product in the space 2 ( )L U . 

 The following theorem holds true. 
 
Theorem 2.1. 
Let ( )tξ



 and ( )tη  be uncorrelated multidimensional 
stationary stochastic processes with the spectral densities 

( )F λ  and ( )G λ  which satisfy the minimality condition (1). 
The spectral characteristic  ( )h λ  and the mean-square error 

( , )F G∆  of the optimal linear estimate of the functional Aξ


 

which depends on the unknown values of the process ( )tξ


 

based on observations of the process ( ) ( ),t tξ η+




 

\t S−∈  can be calculated by formulas (7), (8). 
 

Consider the problem of the mean-square optimal linear 
extrapolation of the functional 

0

( ) ( ) ,
N

NA a t t dtξ ξ= ∫
 

   

which depends on the unknown values of the process ( )tξ


 

based on observations of the process ( ) ( )t tξ η+




 at points 

\t S−∈ . 

The linear estimate ˆ
NA ξ


 of the functional NA ξ


 is of the 
form 

ˆ ( ( )) ( ( ) ( )),N NA h Z d Z dξ ηξ λ λ λ
∞

−∞

= +∫


  

where 1 2( ) { ( )} ( )T s
N kN kh h L F Gλ λ == ∈ +  is the spectral 

characteristic. 

Introduce the function ( )N ta


 such that 

( ) ( ), [0, ], ( ) 0, \ [0, ].N Nt a t t N t t S R N+= ∈ = ∈ ∪a a
 





 

Then the spectral characteristic ( )Nh λ  of the estimate ˆ
NA ξ


 
can be calculated by the formula 

1( ( )) ( ( )) ( )( ( ))N Nh A F Hλ λ λ λ −= − 

1( ( )) ( ( )) ,NC Hλ λ −−    (9) 

1 1

1 0

( ) ( )( ) ( )( ) ,
l

l l

Ms
it it

N N N
l M N

C t e dt t e dtλ λλ
− ∞

− −

= − −

= +∑ ∫ ∫B Ra B Ra

where 
0

( ) ( ) .
N

it
NA a t e dtλλ −= ∫



 

 The mean-square error ( ; , )Nh F G∆  of the estimate ˆ
NA ξ


 
can be calculated by the formula 

( ; , )Nh F G∆ =  
1( )( ), ( )( ) ( )( ), ( ) .NN N Nt t t t−= 〈 〉 + 〈 〉Ra B Ra Qa a



 (10) 
We obtain the following corollary. 
 
Corrolary 2.1. 
 Let ( )tξ



 and ( )tη  be uncorrelated multidimensional 
stationary processes with the spectral densities ( )F λ  and 

( )G λ  which satisfy the minimality condition (1). The spectral 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 12, 2018

ISSN: 1998-0140 97



 

 

characteristic ( )Nh λ  and the mean-square error 

( ; , )Nh F G∆  of the optimal linear estimate of the functional 

NA ξ


 which depends on the unknown values of the process 

( )tξ


 based on observations of the process ( ) ( ),t tξ η+




 

\t S−∈  can be calculated by formulas (9), (10). 

Consider the case where the stationary process ( )tξ


 is 
observed without noise. In this case the spectral characteristic 

of the estimate Âξ


 is of the form 
1( ( )) ( ( )) ( ( )) ( ( )) ,h A C Fλ λ λ λ −= −     (11) 

1 0

( ) ( ) ( ) .
l

l l

Ms
it it

l M N

C t e dt t e dtλ λλ
− ∞

= − −

= +∑ ∫ ∫c c
 

 

Relation (6) in this case can be written as follows 

( ) ( )( ), .t t t U= ∈a Bc


  (12) 
If the operator B  is invertible, then the unknown function 

( )tc


 can be found by the formula 
1( ) ( )( ), .t t t U−= ∈c B a



 
Hence, the spectral characteristic of the estimate 
\hat{A}\vec{\xi} can be represented by formula 

1( ( ) ( ( )) ( ( )) ( ( )) ,h A C Fλ λ λ λ −= −    (13) 

1 1

1 0

( ) ( )( ) ( )( ) .
l

l l

Ms
it it

l M N

C t e dt t e dtλ λλ
− ∞

− −

= − −

= +∑ ∫ ∫B a B a  

The mean-square error of the estimate of the functional can be 
calculated by formula 

1( ; ) ( )( ), ( ) .h F t t−∆ = 〈 〉B a a


 (14) 
 

The following theorem holds true. 
 

Theorem 2.2. 
Let ( )tξ



 be a multidimensional stationary stochastic process 
with the spectral density ( ),F λ  which satisfies the minimality 
condition 

1( ( )) ( ( )) ( )b F b d
π

π

λ λ λ λ−

−

< ∞∫    (15) 

for some nonzero vector-valued function of the exponential 
type 

1
( ) ( ) .

l

l l

Ms
it

l M N

b t e dtλλ α
−

= − −

= ∑ ∫


 

The spectral characteristic  ( )h λ  and the mean-square error 

( , )h F∆  of the optimal linear estimate Âξ


 of the functional 

Aξ


 which depends on the unknown values of the process 

( )tξ


 based on observations of the process ( )tξ


 at time 

points \t S−∈ , where 1[ , ]s
l l l lS M N M== ∪ − − − , can 

be calculated by formulas (13),(14). 

II. MINIMAX METHOD OF EXTRAPOLATION  
Formulas obtained in the section above can be applied to find 
a solution of the estimation problem only in the case where the 
spectral densities of the processes are exactly known. 
In the case where the full information on spectral densities is 
impossible, while it is known that spectral densities belong to 
some specified classes of admissible densities, the minimax 
approach to the problem of estimation is reasonable. This 
method gives us a possibility to find an estimate that minimize 
the maximum value of the mean-square errors of the estimates 
for all spectral densities from the given class of admissible 
spectral densities. 
 
Definition 3.1. 
 For a given class of spectral densities F GD D D= ×  the 

spectral densities 0 ( ) FF Dλ ∈ , 0 ( ) GG Dλ ∈  are called 

least favorable in the class D  for the optimal linear 

extrapolation of the functional Aξ


 if the following relation 
holds true  

( ) ( )( )0 0 0 0 0 0, , ; ,F G h F G F G∆ = ∆ =  

( )( )
( , )

max , ; , .
F GF G D D

h F G F G
∈ ×

= ∆  

 
Definition 3.2. 
For a given class of spectral densities F GD D D= ×  

the spectral characteristic 0 ( )h λ  of the optimal linear 

extrapolation of the functional Aξ


 is called minimax-robust 
if there are satisfied conditions 

0
2

( , )

( ) ( ),
F G

s
D

F G D D

h H L F Gλ
∈ ×

∈ = +


 

( ) ( )0

( , ) ( , )
min max ; , max ; , .

Dh H F G D F G D
h F G h F G

∈ ∈ ∈
∆ = ∆  

 
Making use of the definitions above and the results from the 

previous section, we can formulate the following lemmas. 
 
Lemma 3.1. 
Spectral densities 0 ( ) ,FF Dλ ∈  0 ( ) GG Dλ ∈  satisfying 
the minimality condition (1) are the least favorable in the class 

F GD D D= ×  for the optimal linear extrapolation of the 

functional Aξ


 if the Fourier coefficients  
of the functions  

0 0 1 0 0 1
0( ( ) ( )) , ( )( ( ) ( )) ,F G F F Gλ λ λ λ λ− −+ +  

0 0 0 1 0( )( ( ) ( )) ( )F F G Gλ λ λ λ−+ , 
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determine the operators 0 0 0, ,B R Q , which give a solution to 
the constrain optimization problem 

1

( , )
max ( ( )( ), ( )( ) ( )( ), ( ) )

F GF G D D
t t t t−

∈ ×
〈 〉 + 〈 〉 =Ra B Ra Qa a



 

0 0 1 0 0( )( ), (( ) )( ) ( )( ), ( ) .t t t t−= 〈 〉 + 〈 〉R a B R a Q a a


  (16) 
 
The minimax spectral characteristic 0 0 0( , )h h F G=  is 

determined by formula (7) if 0 0( , ) .Dh F G H∈  
 
Corrolary 3.1. 
Suppose the spectral density 0 ( ) FF Dλ ∈  satisfy the 
minimality condition (\ref{minimal1}). The spectral density 

0 ( ) FF Dλ ∈  is the least favorable in the class FD  for the 

optimal linear extrapolation of the functional Aξ


 from 

observations of the process ( )tξ


 at points \t S−∈ , if the 

Fourier coefficients of the function 0 1( ( ))F λ −  determine the 

operator 0B , which gives a solution to the constrain 
optimization problem 

1 0 1max ( )( ), ( ) (( ) )( ), ( ) .
FF D

t t t t− −

∈
〈 〉 = 〈 〉B a a B a a

 

 (17) 

The minimax spectral characteristic 0 0( )h h F=  is 

determined by formula (13) if 0( ) .
FDh F H∈  

 
For more detailed analysis of properties of the least 

favorable spectral densities and the minimax-robust spectral 
characteristics we observe that the least favorable spectral 
densities  0 ( )F λ , 0 ( )G λ  and the minimax spectral 

characteristic 0 0 0( , )h h F G=  form a saddle point of the 

function ( ); ,h F G∆  on the set .DH D×  The saddle point 
inequalities 

( ) ( ) ( )0 0 0 0 0 0; , ; , ; , ,h F G h F G h F G∆ ≤ ∆ ≤ ∆  

, , ,D F Gh H F D G D∀ ∈ ∀ ∈ ∀ ∈  

hold true if 0 0 0( , )h h F G=  and 0 0( , ) ,Dh F G H∈  where 
0 0( , )F G  is a solution to the constrained optimization 

problem 

( )0 0

( , )
max ( , ); ,

F GF G D D
h F G F G

∈ ×
∆ =  

( )0 0 0 0( , ); , .h F G F G= ∆  (18) 

The linear functional ( )( )0 0, ; ,h F G F G∆  is calculated by 

the formula 

( )( )0 0, ; ,h F G F G∆ =  

0 0 0 0 11 (( ( )) ( ) ( ( )) )( ( ) ( ))
2

A G C F Gλ λ λ λ λ
π

∞ −

−∞
= + +∫  

0 0 1 0 0 *( )( ( ) ( )) (( ( )) ( ) ( ( )) )F F G A G C dλ λ λ λ λ λ λ−+ + 

0 0 0 0 11 (( ( )) ( ) ( ( )) )( ( ) ( ))
2

A F C F Gλ λ λ λ λ
π

∞ −

−∞
+ − +∫  

0 0 1 0 0 *( )( ( ) ( )) (( ( )) ( ) ( ( )) ) ,G F G A G C dλ λ λ λ λ λ λ−+ − 

where 

0 0 1 0

1
( ) (( ) )( )

l

l l

Ms
it

l M N

C t e dtλλ
−

−

= − −

= +∑ ∫ B R a  

0 1 0

0

(( ) )( ) itt e dtλ
∞

−+∫ B R a . 

The constrained optimization problem (18) is equivalent to the 
unconstrained optimization problem [39]: 

( , )D F G∆ =  
0 0( ( , ); , ) (( , ) ) inf,F Gh F G F G F G D Dδ−∆ + × → (19) 

where (( , ) )F GF G D Dδ ×  is the indicator function of the 

set F GD D D= × . Solution of the problem (19) is 

characterized by the condition 0 00 ( , ),D F G∈∂∆  where 
0 0( , )D F G∂∆  is the subdifferential of the convex functional 

( , )D F G∆  at point 0 0( , )F G  [40]. This condition makes it 
possible to find the least favourable spectral densities in some 
special classes of spectral densities D [13], [39], [40]. 

Note, that the form of the functional 0 0( ( , ); , )h F G F G∆  
is convenient for application of the Lagrange method of 
indefinite multipliers for finding solution of the problem (18). 
Making use the method of Lagrange multipliers and the form 
of subdifferentials of the indicator functions we describe 
relations that determine least favourable spectral densities in 
some special classes of spectral densities (see books [28], [29], 
[30] for additional details). 
 

III. LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS 
U
VD D Dε= ×  

Consider the problem of minimax extrapolation of the 

functional Aξ


 in the case where spectral densities of the 
processes belong to the following classes of admissible 
spectral densities U

VD D Dε= × , 
1

1( ) Tr ( ) (1 )Tr ( ) Tr ( ),{ |D F F F Wε λ λ ε λ ε λ= = − +  

1 Tr ( ) ,
2

}F d pλ λ
π

∞

−∞
=∫  

1 ( ) Tr ( ) Tr ( ) Tr ( ),{ |U
VD G V G Uλ λ λ λ= ≤ ≤  

1 Tr ( ) ,
2

}G d qλ λ
π

∞

−∞
=∫  
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2 1( ) ( ) (1 ) ( ) ( ),{ | kk kk kkD F f f wε λ λ ε λ ε λ= = − +  

1 ( ) , 1, ,
2

}kk kf d p k Tλ λ
π

∞

−∞
= =∫  

2 ( ) ( ) ( ) ( ),{ |U
V kk kk kkD G v g uλ λ λ λ= ≤ ≤  

1 ( ) , 1, ,
2

}kk kg d q k Tλ λ
π

∞

−∞
= =∫  

3
1 1 1( ) , ( ) (1 ) , ( ){ |D F B F B Fε λ λ ε λ= = − +  

1 1
1, ( ) , , ( ) ,

2
}B W B F d pε λ λ λ

π
∞

−∞
+ =∫  

3
2 2 2( ) , ( ) , ( ) , ( ) ,{ |U

VD G B V B G B Uλ λ λ λ= ≤ ≤  

2
1 , ( ) ,

2
}B G d qλ λ

π
∞

−∞
=∫  

4
1( ) ( ) (1 ) ( ) ( ),{ |D F F F Wε λ λ ε λ ε λ= = − +  

1 ( ) ,
2

}F d Pλ λ
π

∞

−∞
=∫  

4 ( ) ( ) ( ) ( ),{ |U
VD G V G Uλ λ λ λ= ≤ ≤  

1 ( ) ,
2

}G d Qλ λ
π

∞

−∞
=∫  

where spectral densities 1( ), ( ), ( )V U Fλ λ λ  are known and 

fixed, ( )W λ  is an unknown spectral density. The class U
VD  

describes the “strip” model of stochastic processes, while Dε  
describes the model of “ε -contamination” of stochastic 
processes. 

From the condition 0 00 ( , )D F G∈∂∆  we find the 
following equations which determine the least favourable 
spectral densities for these given sets of admissible spectral 
densities. 

For the first pair 1 1U
VD Dε ×  we have equations 

0 0 * 0(( ( )) ( ) ( ( )) ) (( ( )) ( )A G C A Gλ λ λ λ λ+ +    
0 2 0 0 2

1( ( )) ) ( ( ))( ( ) ( )) ,C F Gλ α γ λ λ λ+ = + +   (20) 
0 0 * 0(( ( )) ( ) ( ( )) ) (( ( )) ( )A F C A Fλ λ λ λ λ− −    

0( ( )) )C λ− =  
2 0 0 2

2 3( ( ) ( ))( ( ) ( )) ,F Gβ γ λ γ λ λ λ= + + +  (21) 

where 1( ) 0γ λ ≤  and 1( ) 0γ λ =  if 
0

1Tr ( ) (1 )Tr ( )F Fλ ε λ> − ; 2 ( ) 0γ λ ≤  and 2 ( ) 0γ λ =  

if 0Tr ( ) Tr ( )G Vλ λ> ; 3 ( ) 0γ λ ≥ , and 3( ) 0γ λ =  if 
0Tr ( ) Tr ( ).G Uλ λ<  

 For the second pair 2 2U
VD Dε ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

{ }0 0 2
1 , 1

( ( ) ( )) ( ( ))
T

k k kl k l
F Gλ λ α γ λ δ

=
= + +  

0 0( ( ) ( )),F Gλ λ+             (22) 
0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   
0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   

{ }0 0 2
2 3 , 1

( ( ) ( )) ( ( ) ( ))
T

k k k kl k l
F Gλ λ β γ λ γ λ δ

=
= + + +  

0 0( ( ) ( )),F Gλ λ+                (23) 

where 1 ( ) 0kγ λ ≤  and 1 ( ) 0kγ λ =  if 
0 1( ) (1 ) ( )kk kkf fλ ε λ> − , 2 ( ) 0kγ λ ≤  and 2 ( ) 0kγ λ =  if 
0 ( ) ( ),kk kkg vλ λ>  3 ( ) 0kγ λ ≥ , and 3 ( ) 0kγ λ =  if 
0 ( ) ( ).kk kkg uλ λ<  

For the third pair 3 3U
VD Dε ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

2 0 0
1( ( ))( ( ) ( ))F Gα γ λ λ λ′= + +  

0 0
1 ( ( ) ( )),B F Gλ λ+  (24) 

 
0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   
0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   

2 0 0
2 3( ( ) ( ))( ( ) ( ))F Gβ γ λ γ λ λ λ′ ′= + + +  

0 0
2 ( ( ) ( )),B F Gλ λ+               (25) 

where 1 ( ) 0γ λ′ ≤  and 1 ( ) 0γ λ′ =  if 
0

1 1 1, ( ) (1 ) , ( )B F B Fλ ε λ〈 〉 > − 〈 〉 , 2 ( ) 0γ λ′ ≤  and 

2 ( ) 0γ λ′ =  if 0
2 2, ( , ( ) ,B G B Vλ λ〈 〉 > 〈 〉  3 ( ) 0γ λ′ ≥ , and 

3( ) 0γ λ′ =  if 0
2 2, ( , ( ) .B G B Uλ λ〈 〉 < 〈 〉  

 
For the fourth pair 4 4U

VD Dε ×  we have equations 
0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

0 0 *( ( ) ( ))( ·F Gλ λ α α= + +
 

 
0 0

1( ))( ( ) ( )),F Gλ λ λ+Γ +   (26) 
0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   
0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   

0 0 *
2( ( ) ( ))( · ( )F Gλ λ β β λ= + + Γ +

 

 
0 0

3 ( ))( ( ) ( ))F Gλ λ λ+Γ + ,           (27) 

where 1( ) 0λΓ ≤  and 1( ) 0λΓ =  if 
0

1( ) (1 ) ( )F Fλ ε λ> − , 2 ( ) 0λΓ ≤  and 2 ( ) 0λΓ =  if 
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0 ( ) ( ),G Vλ λ>  3 ( ) 0λΓ ≥ , and 3( ) 0λΓ =  if 
0 ( ) ( ).G Uλ λ<  

 
Thus, the following statement holds true. 
 
Theorem 4.1. 
Let the minimality condition (1) hold true. The least favorable 
spectral densities 0 ( )F λ , 0 ( )G λ  in the classes U

VD Dε ×  

for the optimal linear extrapolation of the functional Aξ


 are 

determined by relations (20), (21) for the first pair 1 1U
VD Dε ×  

of sets of admissible spectral densities; by relations (22), (23) 
for the second pair 2 2U

VD Dε ×  of sets of admissible spectral 

densities; by relations (24), (25) for the third pair 3 3U
VD Dε ×  

of sets of admissible spectral densities; by relations (26), (27) 
for the fourth pair 4 4U

VD Dε ×  of sets of admissible spectral 
densities; constrained optimization problem (16) and 
restrictions on densities from the corresponding classes 

U
VD Dε × . The minimax-robust spectral characteristic of the 

optimal estimate of the functional Aξ


 is determined by the 
formula (7). 
 
Corrolary 4.1. 
Let the minimality condition (15) hold true. The least 
favorable spectral densities 0 ( )F λ  in the classes kDε , 

1, 2,3, 4k = , for the optimal linear extrapolation of the 

functional Aξ


 from observations of the process ( )tξ


 at 

points \t S−∈ , where 1[ , ]s
l l l lS M N M== ∪ − − − ,  are 

determined by the following equations, respectively, 
0 * 0 2 0 2

1(( ( )) ) ·( ( )) ( ( ))( ( )) ,C C Fλ λ α γ λ λ= +   (28) 
* 0(( ( )) ) ·( ( ))C Cλ λ =   

{ }0 2 0
1 , 1

( ) ( ( )) ( ),
T

k k kl k l
F Fλ α γ λ δ λ

=
= +      (29) 

0 * 0(( ( )) ) ·( ( ))C Cλ λ = 

2 0 0
1 1( ( )) ( )( ) ( ),F B Fα γ λ λ λ′= +    (30) 

0 * 0(( ( )) ) ( ( ))C Cλ λ =   
0 * 0

1( )( · ( )) ( ),F Fλ α α λ λ= + Γ
 

        (31) 
constrained optimization problem (17) and restrictions on 
densities from the corresponding classes kDε , 1, 2,3, 4k = . 
The minimax spectral characteristic of the optimal estimate of 

the functional Aξ


 is determined by the formula (13). 
Corrolary 4.2. 
Let the minimality condition (15) hold true. The least 
favorable spectral densities 0 ( )F λ  in the classes U k

VD , 

1, 2,3, 4k = , for the optimal linear extrapolation of the 

functional Aξ


 from observations of the process ( )tξ


 at 

points \t S−∈ , where 1[ , ]s
l l l lS M N M== ∪ − − −  are 

determined by the following equations, respectively, 
0 * 0(( ( )) ) ·( ( ))C Cλ λ =   

2 0 2
2 3( ( ) ( ))( ( )) ,Fβ γ λ γ λ λ= + +        (32) 

0 * 0(( ( )) ) ·( ( ))C Cλ λ =   

{ }0 2 0
2 3 , 1

( ) ( ( ) ( )) ( ),
T

k k k kl k l
F Fλ β γ λ γ λ δ λ

=
= + +  (33) 

0 * 0(( ( )) ) ·( ( ))C Cλ λ =   
2 0 0

2 3 2( ( ) ( )) ( ) ( ),F B Fβ γ λ γ λ λ λ′ ′= + +       (34) 
0 * 0(( ( )) ) ·( ( ))C Cλ λ =   
0 * 0

2 3( )( · ( ) ( )) ( ),F Fλ β β λ λ λ= + Γ + Γ
 

     (35) 
constrained optimization problem (17}) and restrictions on 
densities from the corresponding classes U k

VD , 1, 2,3, 4k = . 
The minimax spectral characteristic of the optimal estimate of 

the functional Aξ


 is determined by the formula (13). 
 

IV. LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS 

1 2D D Dδ δ= ×  

Consider the problem of extrapolation of the functional 

Aξ


 in the case where spectral densities of the processes 
belong to the following classes of admissible spectral densities 

1 2D D Dδ δ= × , where 

1
1 1 1

1( ) Tr( ( ) ( )) ,
2

|D F F F dδ λ λ λ λ δ
π

∞

−∞

 = − ≤ 
 ∫  

21
2 1 2

1( ) Tr( ( ) ( )) ;
2

|D G G G dδ λ λ λ λ δ
π

∞

−∞

 = − ≤ 
 ∫  

2
1D δ =  

1
1

1( ) ( ) ( ) , 1, ,
2

| kk kk kF f f d k Tλ λ λ λ δ
π

∞

−∞

 − ≤ = 
 ∫  

2
2D δ =  

21
2

1( ) ( ) ( ) , 1, ;
2

| kk kk kG g g d k Tλ λ λ λ δ
π

∞

−∞

 − ≤ = 
 ∫  

3
1 1 1 1

1( ) , ( ) ( ) ,
2

|D F B F F dδ λ λ λ λ δ
π

∞

−∞

 = − ≤ 
 ∫  

23
2 2 1 2

1( ) , ( ) ( ) ;
2

|D G B G G dδ λ λ λ λ δ
π

∞

−∞

 = − ≤ 
 ∫  

4
1D δ =  

1 11( ) ( ) ( ) , , 1, ,
2

| ij ij ijF f f d i j Tλ λ λ λ δ
π

∞

−∞

 = − ≤ = 
 ∫  
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4
2D δ =  

21 21( ) ( ) ( ) , , 1, ,
2

| ij ij ijG g g d i j Tλ λ λ λ δ
π

∞

−∞

 − ≤ = 
 ∫  

where 1 1( ), ( )F Gλ λ  are known and fixed spectral densities. 

The class 1D δ  describes the model of “δ -neighborhood” in 

the space 1L  of the given bounded spectral density 1( )F λ , 

while 2D δ  describes the model of “δ -neighborhood” in the 

space 2L  of the given bounded spectral density 1( )G λ . 

From the condition 0 00 ( , )D F G∈∂∆  we find the 
following equations which determine the least favourable 
spectral densities for these given sets of admissible spectral 
densities. 

For the first pair 1 1
1 2D Dδ δ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

2 0 0 2( )( ( ) ( )) ,F Gα γ λ λ λ= +   (36) 
0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   

0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   
2 0 0 0 2

1Tr( ( ) ( ))( ( ) ( )) ,G G F Gβ λ λ λ λ= − +   (37) 

0
1 1

1 Tr( ( ) ( )) ,
2

F F dλ λ λ δ
π

∞

−∞
− =∫   (38) 

20
1 2

1 Tr( ( ) ( )) ,
2

G G dλ λ λ δ
π

∞

−∞
− =∫   (39) 

where ( ) 1γ λ ≤  and 
0

1( ) sign (Tr( ( ) ( )))F Fγ λ λ λ= −  

if 0
1Tr( ( ) ( )) 0.F Fλ λ− ≠  

For the second pair 2 2
1 2D Dδ δ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

{ }0 0 2

, 1
( ( ) ( )) ( )

T

k k kl k l
F Gλ λ α γ λ δ

=
= +  

0 0( ( ) ( )),F Gλ λ+  (40) 
 

0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   
0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   

{ }0 0 2 0 1

, 1
( ( ) ( )) ( ( ) ( ))

T

k kk kk kl k l
F G g gλ λ β λ λ δ

=
= + −  

0 0( ( ) ( )),F Gλ λ+               (41) 
 

0 1
1

1 ( ) ( ) , 1, ,
2 kk kk kf f d k Tλ λ λ δ
π

∞

−∞
− = =∫   (42) 

20 1
2

1 ( ) ( ) , 1, ,
2 kk kk kg g d k Tλ λ λ δ
π

∞

−∞
− = =∫     (43) 

where ( ) 1kγ λ ≤  and 
0 1( ) sign ( ( ) ( ))k kk kkf fγ λ λ λ= −  

if 0 1( ) ( ) 0, 1, .kk kkf f k Tλ λ− ≠ =  

For the third pair 3 3
1 2D Dδ δ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

2 0 0( )( ( ) ( ))F Gα γ λ λ λ′= +  
0 0

1 ( ( ) ( )),B F Gλ λ+             (44) 
0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−   

0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   
2 0 0 0 2

2 1, ( ) ( ) ( ( ) ( )) ,B G G F Gβ λ λ λ λ= − +    (45) 

0
1 1 1

1 , ( ) ( ) ,
2

B F F dλ λ λ δ
π

∞

−∞
− =∫  (46) 

20
2 1 2

1 , ( ) ( ) ,
2

B G G dλ λ λ δ
π

∞

−∞
− =∫   (47) 

where ( ) 1γ λ′ ≤  and 
0

1 1( ) sign , ( ) ( )B F Fγ λ λ λ′ = −   

if 0
1 1, ( ) ( ) 0.B F Fλ λ− ≠  

 For the fourth pair 4 4
1 2D Dδ δ×  we have equations 

0 0 *(( ( )) ( ) ( ( )) )A G Cλ λ λ+   
0 0(( ( )) ( ) ( ( )) )A G Cλ λ λ+ =   

{ }0 0 0 0

, 1
( ( ) ( )) ( )) ( ( ) ( )),

T

ij ij i j
F G F Gλ λ α γ λ λ λ

=
= + +  

0 0 *(( ( )) ( ) ( ( )) )A F Cλ λ λ−  ,  (48) 
 

0 0(( ( )) ( ) ( ( )) )A F Cλ λ λ− =   

{ }0 0 0 1

, 1
( ( ) ( )) ( ( ) ( ))

T

ij ij ij i j
F G g gλ λ β λ λ

=
= + −  

0 0( ( ) ( )),F Gλ λ+               (49) 

0 1 11 ( ) ( ) , , 1, ,
2 ij ij ijf f d i j Tλ λ λ δ
π

∞

−∞
− = =∫  (50) 

20 1 21 ( ) ( ) , , 1, ,
2 ij ij ijg g d i j Tλ λ λ δ
π

∞

−∞
− = =∫  (51) 

where ( ) 1ijγ λ ≤  and 
0 1

0 1

( ) ( )
( )

( ) ( )
ij ij

ij
ij ij

f f
f f

λ λ
γ λ

λ λ
−

=
−

 

if 
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0 1( ) ( ) 0, , 1, .ij ijf f i j Tλ λ− ≠ =  
 
Thus, the following theorem holds true. 

 
Theorem 5.1. 
Let the minimality condition (1) hold true. The least favorable 
spectral densities 0 ( )F λ , 0 ( )G λ  in the classes 1 2D Dδ δ×  

for the optimal linear extrapolation of the functional Aξ


 are 
determined by relations (36) - (39) for the first pair 

1 1
1 2D Dδ δ×  of sets of admissible spectral densities; by 

relations (40) - (43) for the second pair 2 2
1 2D Dδ δ×  of sets of 

admissible spectral densities; by relations (44) - (47) for the 
third pair 3 3

1 2D Dδ δ×  of sets of admissible spectral densities; 

by relations (48) - (51) for the fourth pair 4 4
1 2D Dδ δ×  of sets 

of admissible spectral densities; constrained optimization 
problem (16) and restrictions on densities from the 
corresponding classes 1 2D Dδ δ× . The minimax-robust 
spectral characteristic of the optimal estimate of the functional 

Aξ


 is determined by the formula (7). 
 
Corrolary 5.1. 
Let the minimality condition 15) hold true. The least favorable 
spectral densities 0 ( )F λ  in the classes 1

kD δ , 1, 2,3, 4k = , 

for the optimal linear extrapolation of the functional Aξ


 from 

observations of the process ( )tξ


 at points \t S−∈ , where 

1[ , ]s
l l l lS M N M== ∪ − − − , are determined by the 

following equations, respectively, 
0 * 0 2 0 2(( ( )) ) ·( ( )) ( )( ( )) ,C C Fλ λ α γ λ λ=   (52) 
0 * 0(( ( )) ) ·( ( ))C Cλ λ = 

{ }0 2 0

, 1
( ) ( ) ( ),

T

k k kl k l
F Fλ α γ λ δ λ

=
=  (53) 

0 * 0 2 0 0
1(( ( )) ) ·( ( )) ( ) ( ) ( ),C C F B Fλ λ α γ λ λ λ′=   (54) 

0 * 0(( ( )) ) ·( ( ))C Cλ λ =   

{ }0 0

, 1
( ) ( ) ( ) ( ),

T

ij ij i j
F Fλ α λ γ λ λ

=
=  (55) 

constrained optimization problem (17) and the following 
restrictions on densities from the corresponding classes 1

kD δ , 

1, 2,3, 4k = , respectively, 

0
1 1

1 Tr( ( ) ( )) ,
2

F F dλ λ λ δ
π

∞

−∞
− =∫  (56) 

0 1
1

1 ( ) ( ) ,
2 kk kk kf f dλ λ λ δ
π

∞

−∞
− =∫  (57) 

0
1 1 1

1 , ( ) ( ) ,
2

B F F dλ λ λ δ
π

∞

−∞
− =∫  (58) 

0 1 11 ( ) ( ) .
2 ij ij ijf f dλ λ λ δ
π

∞

−∞
− =∫  (59) 

The minimax spectral characteristic of the optimal estimate of 

the functional Aξ


 is determined by the formula (13). 
 
Corrolary 5.2. 
Let the minimality condition (15) hold true. The least 
favorable spectral densities 0 ( )F λ  in the classes 2

kD δ , 

1, 2,3, 4k = , for the optimal linear extrapolation of the 

functional Aξ


 from observations of the process ( )tξ


 at 

points \t S−∈ , where 1[ , ]s
l l l lS M N M== ∪ − − − , are 

determined by the following equations, respectively, 
0 * 0(( ( )) ) ·( ( ))C Cλ λ =   
2 0 0 2

1Tr( ( ) ( ))( ( )) ,F G Fβ λ λ λ= −         (60) 
0 * 0(( ( )) ) ·( ( ))C Cλ λ =   

{ }0 2 0 1 0

, 1
( ) ( ( ) ( )) ( ),

T

k kk kk kl k l
F f g Fλ β λ λ δ λ

=
= −     (61) 

0 * 0(( ( )) ) ·( ( ))C Cλ λ =   
2 0 0 2

2 1, ( ) ( ) ( ( )) ,B F G Fβ λ λ λ= −        (62) 
0 * 0(( ( )) ) ·( ( ))C Cλ λ =   

{ }0 0 1 0

, 1
( ) ( ( ) ( )) ( )

T

ij ij ij i j
F f g Fλ β λ λ λ

=
= −      (63) 

constrained optimization problem (17) and the following 
restrictions on densities from the corresponding classes 2

kD δ , 

1, 2,3, 4k = , respectively, 
20

1 2
1 Tr( ( ) ( )) ,

2
F G dλ λ λ δ

π
∞

−∞
− =∫  (64) 

20 1
2

1 ( ) ( ) , 1, ,
2 kk kk kf g d k Tλ λ λ δ
π

∞

−∞
− = =∫  (65) 

20
2 1 2

1 , ( ) ( ) ,
2

B F G dλ λ λ δ
π

∞

−∞
− =∫  (66) 

20 1 21 ( ) ( ) , , 1, .
2 ij ij ijf g d i j Tλ λ λ δ
π

∞

−∞
− = =∫  (67) 

The minimax spectral characteristic of the optimal estimate of 

the functional Aξ


 is determined by the formula (13). 
 

V. CONCLUSION 
In the article we propose methods of the mean-square optimal 
linear extrapolation of functionals which depend on the 
unknown values of the multidimensional stationary stochastic 
process based on observed data of the process with noise and 
missing values. In the case of spectral certainty where the 
spectral densities of the stationary processes are known we 
apply the method of orthogonal projection in a Hilbert space 
and derive formulas for calculating the spectral characteristics 
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and the mean-square errors of the optimal estimates of the 
functionals. The corresponding results are obtained is the case 
of observations without noise. In the case of spectral 
uncertainty, where the spectral densities of the stationary 
processes are not exactly known while some special sets of 
admissible spectral densities are given, we apply the minimax-
robust estimation method and derive relations which determine 
the least favourable spectral densities. 
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